Муниципальное казённое учреждение «Управление образования» г. Рубцовска Муниципальное бюджетное общеобразовательное учреждение «Лицей «Эрудит»

 СОГЛАСОВАНО
 УТВЕРЖДАЮ

 педагогическим советом
 Директор МБОУ «Лицей «Эрудит»

 (протокол от 30.08.2023г. №7)
 В. С. Чанцова

 Приказ от 31.08.2023г. № 209

Рабочая программа по учебному предмету «Химия» для 11 «А» класса основного общего образования на 2023-2024 учебный год Пахомовой Наталии Григорьевны учителя высшей квалификационной категории

Содержание рабочей программы

- 1. Пояснительная записка.
 - 1.1. Нормативные документы и материалы, на основе которых разработана рабочая программа;
 - 1.2. Количество учебных часов в год, неделю, на которое рассчитано преподавание предмета;
- 2.Планируемые результаты освоения учебного предмета;
- 3. Тематическое планирование;
- 4. Содержание учебного предмета;
- 5. Поурочный календарно-тематический план;
- 6.Лист внесения изменений в Рабочую программу.

1. Пояснительная записка

1.1. Нормативные документы и материалы, на основе которых разработана рабочая программа

Данная рабочая программа разработана на основе:

- 1. Федеральный государственный образовательный стандарт основного общего образования, утвержден приказом Министерства образования и науки Российской Федерации от «17» декабря 2010 г. № 1897;
- 2. Примерные программы основного общего образования. Химия. М.: Просвещение, 2010. 79 с.
- 3.Приказ Министерства Просвещения Российской Федерации от 28 декабря 2018 года № 345 «О федеральном перечне учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования».
- 4.Изменения, которые вносятся в федеральный перечень учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования, утверждённый приказом Министерства просвещения Российской Федерации от 28 декабря 2018 г. № 345.
- 5. Химия. Рабочие программы. Предметная линия учебников О. С. Габриеляна, И. Г. Остроумова, С. А. Сладкова. 10—11 классы базовый уровень: учеб. пособие для общеобразоват. организаций / О. С. Габриелян, С. А. Сладков М.: Просвещение, 2019—34с.
- 6.Основной образовательной программа основного общего образования лицея "Эрудит" (ФГОС);
- 7. Учебного плана МБОУ "Лицей "Эрудит" на 2022 2023 учебный год;
- 8. Календарного учебного графика на текущий учебный год МБОУ "Лицей "Эрудит";
- 9.Положения о рабочей программе учебных предметов, курсов, в том числе внеурочной деятельности МБОУ "Лицей "Эрудит».

1.2. Количество учебных часов в год, неделю, на которое рассчитано преподавание предмета

Количество часов, отведённое на изучение химии согласно программе и тематическому планированию курса, учебному плану Лицея, календарному учебному графику - 34 часа в год, при учебной нагрузке 1 час в неделю. Курс изучается в течение всего учебного года. Авторская рабочая программа рекомендует 35 часов, из них 1 час резервного времени. Программа сокращена на 1 час за счёт резервного времени.

2. Планируемые результаты освоения учебного предмета 1. Личностные результаты:

- 1. чувства гордости за российскую химическую науку и осознание российской гражданской идентичности в ценностно-ориентационной сфере;
- 2. осознавать необходимость своей познавательной деятельности и умение управлять ею, готовность и способность к самообразованию на протяжении всей жизни; понимание важности непрерывного образования как фактору успешной профессиональной и общественной деятельности; в познавательной (когнитивной, интеллектуальной) сфере
- 3. готовность к осознанному выбору дальнейшей образовательной траектории или сферы профессиональной деятельности в трудовой сфере;

4. неприятие вредных привычек (курения, употребления алкоголя и наркотиков) на основе знаний о токсическом и наркотическом действии веществ — в сфере здоровьесбережения и безопасного образа жизни;

2. Метапредметные результаты:

- 1) использование основных методов познания (определение источников учебной и научной информации, получение этой информации, её анализ, и умозаключения на его основе, изготовление и презентация информационного продукта; проведение эксперимента, в том числе и в процессе исследовательской деятельности, моделирование изучаемых объектов, наблюдение за ними, их измерение, фиксация результатов) и их применение для понимания различных сторон окружающей действительности;
- 2) *владение* основными интеллектуальными операциями (анализ и синтез, сравнение и систематизация, обобщение и конкретизация, классификация и поиск аналогов, выявление причинно-следственных связей, формулировка гипотез, их проверка и формулировка выводов);
- 3) *познание* объектов окружающего мира в плане восхождения от абстрактного к конкретному (от общего через частное к единичному);
- 4) способность выдвигать идеи и находить средства, необходимые для их достижения;
- 5) умение формулировать цели и определять задачи в своей познавательной деятельности, определять средства для достижения целей и решения задач;
- б) *определять* разнообразные источники получения необходимой химической информации, установление соответствия содержания и формы представления информационного продукта аудитории;
- 7) *умение* продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;
- 8) готовность к коммуникации (представлять результаты собственной познавательной деятельности, слышать и слушать оппонентов, корректировать собственную позицию);
- 9) умение использовать средства информационных и коммуникационных технологий (далее ИКТ) в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;
- 10) владение языковыми средствами, в том числе и языком химии умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства, в том числе и символьные (химические знаки, формулы и уравнения).

3. Предметные результаты:

І. В познавательной сфере:

- 1. знание (понимание) терминов, основных законов и важнейших теорий курса органической и общей химии;
- 2. умение наблюдать, описывать, фиксировать результаты и делать выводы на основе демонстрационных и самостоятельно проведённых экспериментов, используя для этого родной (русский или иной) язык и язык химии;
- 3. умение классифицировать химические элементы, простые вещества, неорганические и органические соединения, химические процессы;
- 4. умение характеризовать общие свойства, получение и применение изученных классы неорганических и органических веществ и их важнейших представителей;
- 5. *описывать* конкретные химические реакции, условия их проведения и управления химическими процессами;

- 6. *умение* проводить самостоятельный химический эксперимент и наблюдать демонстрационный эксперимент, фиксировать результаты и делать выводы и заключения по результатам;
- 7. *прогнозировать* свойства неизученных веществ по аналогии со свойствами изученных на основе знания химических закономерностей;
- 8. *определять* источники химической информации, получать её, проводить анализ, изготавливать информационный продукт и представлять его;
- 9. уметь пользоваться обязательными справочными материалами: Периодической системой химических элементов Д. И. Менделеева, таблицей растворимости, электрохимическим рядом напряжений металлов, рядом электроотрицательности для характеристики строения, состава и свойств атомов химических элементов I—IV периодов и образованных ими простых и сложных веществ;
- 10. установление зависимости свойств и применения важнейших органических соединений от их химического строения, в том числе и обусловленных характером этого строения (предельным или непредельным) и наличием функциональных групп;
- 11. моделирование молекул неорганических и органических веществ;
- 12. понимание химической картины мира как неотъемлемой части целостной научной картины мира.
- II. В ценностно-ориентационной сфере формирование собственной позиции при оценке последствий для окружающей среды деятельности человека, связанной с производством и переработкой химических продуктов;
- III.**В трудовой сфере** *проведение* химического эксперимента; *развитие* навыков учебной, проектно-исследовательской и творческой деятельности при выполнении индивидуального проекта по химии;
- IV.**В сфере здорового образа ж**изни *соблюдение* правил безопасного обращения с веществами, материалами; оказание первой помощи при отравлениях, ожогах и травмах, полученных в результате нарушения правил техники безопасности при работе с веществами и лабораторным оборудованием.

3. Тематическое планирование

№	Раздел.	К-во час.
1	Строение веществ.	9
2	Химические реакции.	12
3	Вещества и их свойства.	9
4	Химия и современное общество.	4

V. Содержание курса. 11 класс. Базовый уровень Строение веществ – 9 час.

Основные сведения о строении атома. Строение атома: состав ядра (нуклоны) и электронная оболочка. Понятие об изотопах. Понятие о химическом элементе, как совокупности атомов с одинаковым зарядом ядра.

Периодическая система химических элементов Д. И. Менделеева в свете свете учения о строении атома. Физический смысл принятой в таблице Д. И. Менделеева символики: порядкового номера элемента, номера периода и номера группы. Понятие о валентных электронах. Отображение строения электронных оболочек атомов химических элементов с помощью электронных и электронно-графических формул.

Объяснение закономерностей изменения свойств элементов в периодах и группах периодической системы, как следствие их электронного строения. Электронные семейства химических элементов.

Сравнение Периодического закона и теории химического строения на философской основе: предпосылки открытия Периодического закона и теории химического строения органических соединений; роль личности в истории химии; значение практики в становлении и развитии химических теорий.

Ионная химическая связь и ионные кристаллические решётки. Катионы и анионы: их заряды и классификация по составу на простые и сложные. Представители. Понятие об ионной химической связи. Ионная кристаллическая решётка и физические свойства веществ, обусловленные этим строением.

Ковалентная химическая связь. Атомные и молекулярные кристаллические решётки. Понятие о ковалентной связи. Электроотрицательность, неполярная и полярная ковалентные связи. Кратность ковалентной связи. Механизмы образования ковалентных связей: обменный и донорно- акцепторный. Полярность молекулы, как следствие полярности связи и геометрии молекулы. Кристаллические решётки с этим типом связи: молекулярные и атомные. Физические свойства веществ, обусловленные типом кристаллических решёток.

Металлическая связь. Понятие о металлической связи и металлических кристаллических решётках. Физические свойства металлов на основе их кристаллического строения. Применение металлов на основе их свойств. Чёрные и цветные сплавы.

Водородная химическая связь. Межмолекулярная и внутримолекулярная водородные связи. Значение межмолекулярных водородных связей в природе и жизни человека. Полимеры. Получение полимеров реакциями полимеризации и поликонденсации. Важнейшие представители пластмасс и волокон, их получение, свойства и применение. Понятие о неорганических полимерах и их представители.

Дисперсные системы. Понятие о дисперсной фазе и дисперсионной среде. Агрегатное состояние размер частиц фазы, как основа для классификации дисперсных систем. Эмульсии, суспензии, аэрозоли — группы грубодисперсных систем, их представители. Золи и гели — группы тонкодисперсных систем, их представители. Понятие о синерезисе и коагуляции.

Демонстрации. Периодической системы химических элементов Д. И. Менделеева в различных формах. Модель ионной кристаллической решётки на примере хлорида натрия. Минералы с этим типом кристаллической решёткой: кальцит, галит. Модели молекулярной кристаллической решётки на примере «сухого льда» или иода и атомной кристаллической решётки на примере алмаза, графита или кварца. Модель молярного объёма газа. Модели кристаллических решёток некоторых металлов. Коллекции образцов различных дисперсных систем. Синерезис и коагуляция.

Лабораторные опыты. Конструирование модели металлической химической связи. Получение коллоидного раствора куриного белка, исследование его свойств с помощью лазерной указки и проведение его денатурации. Получение эмульсии растительного масла и наблюдение за её расслоением. Получение суспензии «известкового молока» и наблюдение за её седиментацией.

Химические реакции – 12 час.

Классификация химических реакций. Аллотропизация и изомеризация, как реакции без изменения состава веществ. Аллотропия и её причины. Классификация реакций по различным основаниям: по числу и составу реагентов и продуктов, по фазе, по использованию катализатора или фермента, по тепловому эффекту. Термохимические уравнения реакций.

Скорость химических реакций. Факторы, от которых зависит скорость химических реакций: природа реагирующих веществ, температура, площадь их соприкосновения реагирующих веществ, их концентрация, присутствие катализатора. Понятие о катализе. Ферменты, как биологические катализаторы. Ингибиторы, как «антонимы» катализаторов и их значение.

Химическое равновесие и способы его смещения. Классификация химических реакций по признаку их направления. Понятие об обратимых реакциях и химическом равновесии. Принцип Ле-Шателье и способы смещения химического равновесия. Общая характеристика реакций синтезов аммиака и оксида серы(VI) и рассмотрение условий смещения их равновесия на производстве.

Гидролиз. Обратимый и необратимый гидролизы. Гидролиз солей и его типы. Гидролиз органических соединений в живых организмов, как основа обмена веществ. Понятие об энергетическом обмене в клетке и роли гидролиза в нём.

Окислительно-восстановительные реакции. Степень окисления и её определение по формулам органических и неорганических веществ. Элементы и вещества, как окислители и восстановители. Понятие о процессах окисления и восстановления. Составление уравнений химических реакций на основе электронного баланса.

Электролиз расплавов и растворов электролитов. Характеристика электролиза, как окислительно-восстановительного процесса. Особенности электролиза, протекающего в растворах электролитов. Практическое применение электролиза: получение галогенов, водорода, кислорода, щелочных металлов и щелочей, а также алюминия электролизом расплавов и растворов соединений этих элементов. Понятие о гальванопластике, гальваностегии, рафинировании цветных металлов.

Демонстрации. Растворение серной кислоты и аммиачной селитры и фиксация тепловых явлений для этих процессов. Взаимодействия растворов соляной, серной и уксусной кислот одинаковой концентрации с одинаковыми кусочками (гранулами) цинка и взаимодействие одинаковых кусочков разных металлов (магния, цинка, железа) с раствором соляной кислоты, как пример зависимости скорости химических реакций от природы веществ. Взаимодействие растворов тиосульфата натрия концентрации и температуры с раствором серной кислоты. Моделирование «кипящего слоя». Использование неорганических катализаторов (солей железа, иодида калия) и природных объектов, содержащих каталазу (сырое мясо, картофель) для разложения пероксида водорода. Взаимодействие цинка с соляной кислотой нитратом серебра, как примеры окислительно-восстановительной реакций и реакции обмена. Конструирование модели электролизёра. Видеофрагмент с промышленной установки для получения алюминия. **Лабораторные опыты.** Иллюстрация правила Бертолле на практике — проведение реакций с образованием осадка, газа и воды. Гетерогенный катализ на примере разложения пероксида водорода в присутствии диоксида марганца. Смещение равновесия в системе $Fe^{3+} + 3CNS^- \leftrightarrow Fe(CNS)_3$. Испытание индикаторами среды растворов солей различных типов. Окислительно-восстановительная реакция и реакция обмена на примере взаимодействия растворов сульфата меди(II) с железом и раствором щелочи. Практическая работа. Решение экспериментальных задач по теме «Химическая

Вещества и их свойства – 9 час.

реакция».

Металлы. Физические свойства металлов, как функция их строения. Деление металлов на группы в технике и химии. Химические свойства металлов и электрохимический ряд напряжений. Понятие о металлотермии (алюминотермии, магниетермии и др.). **Неметаллы**. **Благородные газы**. Неметаллы как окислители. Неметаллы как восстановители. Ряд электроотрицательности. Инертные или благородные газы.

Кислоты неорганические и органические. Кислоты с точки зрения атомномолекулярного учения. Кислоты с точки зрения теории электролитической диссоциации. Кислоты с точки зрения протонной теории. Общие химические свойства кислот. Классификация кислот.

Основания неорганические и органические. Основания с точки зрения атомномолекулярного учения. Основания с точки зрения теории электролитической диссоциации. Основания с точки зрения протонной теории. Классификация оснований. Химические свойства органических и неорганических оснований.

Амфотерные соединения неорганические и органические. Неорганические амфотерные соединения: оксиды и гидроксиды, — их свойства и получение. Амфотерные органические соединения на примере аминокислот. Пептиды и пептидная связь. Соли. Классификация солей. Жёсткость воды и способы её устранения. Переход карбоната в гидрокарбонат и обратно. Общие химические свойства солей. Демонстрации. Коллекция металлов. Коллекция неметаллов. Взаимодействие концентрированной азотной кислоты с медью. Вспышка термитной смеси. Вспышка чёрного пороха. Вытеснение галогенов из их растворов другими галогенами. Взаимодействие паров концентрированных растворов соляной кислоты и аммиака («дым без огня»). Получение аммиака и изучение его свойств. Различные случаи взаимодействия растворов солей алюминия со щёлочью. Получение жёсткой воды и устранение её жёсткости.

Лабораторные опыты. Получение нерастворимого гидроксида и его взаимодействие с кислотой. Исследование концентрированных растворов соляной и уксусной кислот капельным методом при их разбавлении водой. Получение амфотерного гидроксида и изучение его свойств. Проведение качественных реакций по определению состава соли. **Практическая работа**. Решение экспериментальных задач по теме «Вещества и их свойства».

Химия и современное общество – 4 час.

Производство аммиака и метанола. Понятие о химической технологии. Химические реакции в производстве аммиака и метанола. Общая классификационная характеристика реакций синтеза в производстве этих продуктов. Научные принципы, лежащие в основе производства аммиака и метанола. Сравнение этих производств.

Химическая грамотность как компонент общей культуры человека. Маркировка упаковочных материалов, электроники и бытовой техники, экологичного товара, продуктов питания, этикеток по уходу за одеждой.

Демонстрации. Модель промышленной установки получения серной кислоты. Модель колонны синтеза аммиака. Видеофрагменты и слайды о степени экологической чистоты товара.

Лабораторные опыты. Изучение маркировок различных видов промышленных и продовольственных товаров.

VI. КАЛЕНДАРНЫЙ ПЛАН ПО ХИМИИ XI КЛАСС XI КЛАСС (1 ч в неделю, всего 35 ч, из них 1 ч — резервное время)

№		Тема урока Вид занятия	К-во	Дата пр	оведения
Π/Π			час	План	Факт
		Тема 1. Строение веществ (9 ч)			
1.	1. Основные сведения о строении атома.	Д. Портреты Э. Резерфорда, Н. Бора. Видеофрагменты и слайды «Большой адронный коллайдер», «Уровни строения вещества»	1	04-09/09	
2.	2. Периодическая система химических элементов Д. И. Менделеева в свете учения о строении атома.	Д. Различные формы Периодической системы химических элементов Д. И. Менделеева. Портрет Д. И. Менделеева. Л.О Моделирование построения Периодической системы с помощью карточек.	1	11- 16/09	
3.	3. Сравнение Периодического закона и теории химического строения на философской основе	. Д. Портреты Д. И. Менделеева и А. М. Бутлерова	1	18 - 23/09	
4.	4. Ионная химическая связь и ионные кристаллические решётки.	Д. Модель ионной кристаллической решётки на примере хлорида натрия. Минералы с этим типом кристаллической решёткой: кальцит, галит.	1	25 – 30 / 09	
5.	5. Ковалентная химическая связь. Атомные и молекулярные кристаллические решётки.	Д. Модели молекулярной кристаллической решётки на примере «сухого льда» или йода и атомной кристаллической решётки на примере алмаза, графита или кварца. Модель молярного объёма газа	1	02-07/10	
6.	6. Металлическая химическая связь.	Д. Модели кристаллических решёток металлов. Л.О Конструирование модели металлической химической связи	1	09-14/10	
7.	7. Водородная химическая связь.	Д. Видеофрагменты и слайды «Структуры белка». Л.О Денатурация белка	1	16 - 21 / 10	
8.	8. Полимеры.	Д. Коллекции «Пластмассы», «Волокна». Образцы неорганических полимеров — веществ атомной структуры.	1	23 – 28 / 10	
9.	9. Дисперсные системы.	Д. Коллекции образцов различных дисперсных систем. Синерезис и коагуляция. Л.О. Получение коллоидного раствора куриного белка, исследование его свойств с помощью лазерной указки и проведение его денатурации. Получение эмульсии растительного	1	2 четв 06 – 11 / 11	

		масла и наблюдение за её расслоением. Получение суспензии			
		«известкового молока» и наблюдение за её седиментацией.			
		Тема 2. Химические реакции (12 ч)			
10.	1. Классификация химических реакций.	Д. Растворение серной кислоты и аммиачной селитры и фиксация тепловых явлений для этих процессов.	2.1	13 - 18/11	
11.	2. Классификация химических реакций.	Д. Растворение серной кислоты и аммиачной селитры и фиксация тепловых явлений для этих процессов.	2.2	20 – 25 /11	
12.	3. Скорость химических реакций.	Д. Взаимодействия растворов соляной, серной и уксусной кислот одинаковой концентрации с одинаковыми кусочками (гранулами) цинка и взаимодействие одинаковых кусочков разных металлов (магния, цинка, железа) с раствором соляной кислоты, как пример зависимости скорости химических реакций от природы веществ. Взаимодействие растворов тиосульфата натрия концентрации и температуры с раствором серной кислоты. Моделирование «кипящего слоя». Гетерогенный катализ на примере разложения пероксида водорода в присутствии диоксида марганца. Л.О Использование неорганических катализаторов (солей железа, иодида калия) и природных объектов, содержащих каталазу (сырое мясо, картофель) для разложения пероксида водорода	1	27 - 02/12	
13.	4. Обратимость химических реакций. Химическое равновесие и способы его смещения.		1	04 - 09/12	
14.	5. Гидролиз.	<i>Л.О</i> Испытание индикаторами среды растворов солей различных типов.	2.1	11 – 16 /12	
15.	6. Гидролиз.	<i>Л.О</i> Испытание индикаторами среды растворов солей различных типов.	2.2	18 - 23 / 12	
16.	7. Окислительновосстановительные реакции.	Д. Взаимодействие цинка с соляной кислотой и нитратом серебра. Л.О Окислительно-восстановительная реакция и реакция обмена на примере взаимодействия растворов сульфата меди(II) с железом и раствором щелочи.		25 – 30 / 12	
17.	8. Электролиз расплавов и растворов. Практическое применение электролиза.	Д. Конструирование модели электролизёра. Видеофрагмент с промышленной установки для получения алюминия.	1	3 четв 09 – 13 /01	

18.	9. Видеофрагмент с промышленной установки для получения алюминия. Электролиз расплавов и растворов. Практическое применение электролиза.	Д. Конструирование модели электролизёра.	1	15 – 20 /01
19.	10. Практическая работа № 1. Решение экспериментальных задач по теме «Химическая реакция»	Решение экспериментальных задач по теме «Химическая реакция»	1	22 – 27 / 01
20.	11. Повторение и обобщение изученного		1	29 – 03 /02
21.	12. Контрольная работа № 1 «Строение вещества. Химическая реакция»	1 «Строение вещества. Химическая реакция»	1	05 - 10 /02
		Тема 3. Вещества и их свойства (9 ч)		
22.	1. Металлы	. Д. Коллекция металлов. Взаимодействие концентрированной азотной кислоты с медью. Вспышка термитной смеси. Портрет Н. Н. Бекетова	1	12- 17/02
23.	2. Неметаллы. Благородные газы.	Д. Коллекция неметаллов. Вспышка чёрного пороха. Вытеснение галогенов из их растворов другими галогенами	1	19 – 24 / 02
24.	3. Кислоты неорганические и органические.	Л.О Исследование концентрированных растворов соляной и уксусной кислот капельным методом при их разбавлении водой.	1	26 – 02 /03
25.	4. Основания неорганические и органические.	Д. Коллекция щелочей и аминов. Взаимодействие паров концентрированных растворов соляной кислоты и аммиака («дым без огня»). Получение аммиака и изучение его свойств. Л.О Получение нерастворимого гидроксида и его взаимодействие с кислотой.	1	04 – 09 /03
26.	5. Амфотерные соединения неорганические и	\mathcal{A} . Различные случаи взаимодействия растворов солей алюминия со щёлочью. \mathcal{A} . О Получение амфотерного гидроксида и изучение его свойств	1	11 – 16 /03

	органические.				
	1				
27.	6. Соли.	\mathcal{A} . Получение жёсткой воды и устранение её жёсткости. \mathcal{A} .	1	18 – 23 /	
		Проведение качественных реакций по определению состава соли.		03	
28.	7. Практическая работа	Решение экспериментальных задач по теме «Вещества и их	1	4 четв.	
	№ 2. Решение	свойства»		03 – 06 /04	
	экспериментальных				
	задач по теме «Вещества				
	и их свойства»				
29.	8. Повторение и		1	08 – 13 /04	
	обобщение темы				
30.	9. Контрольная работа	«Вещества и их свойства»	1	15 - 20/04	
	№ 2 «Вещества и их				
	свойства»				
		Тема 4. Химия и современное общество (4 ч)			
31.	1. Химическая	Д. Модели промышленных установок получения серной кислоты	1	22 – 27 / 04	
	технология.	и синтеза аммиака			
32.	2. Химическая	Д. Видеофрагменты и слайды о степени экологической чистоты	1	29 – 04 /05	
	грамотность как	товара. Л.О Изучение маркировок различных видов			
	компонент общей	промышленных и продовольственных товаров			
	культуры человека.				
33.	3. Повторение и		2.1	06 – 11 /05	
	обобщение курса.				
	Подведение итогов				
	учебного года				
34.	4. Повторение и		2.2	13 – 18 /05	
	обобщение курса.				
	Подведение итогов				
	учебного года				
35.	1. Резервное время		1	20 – 25 /05	

6. Лист корректировки

КАЛЕНДАРНО-ТЕМАТИЧЕСКОГО ПЛАНИРОВАНИЯ 2022_-2023_- учебного года предмет_ХИМИЯ_____ класс (ы)_11_____ Учитель__ПАХОМОВА Н Г__

ч	четверть		По рабочей программе		Корректировка		
К-во уроко в по	К-во уроко в по	Дата урока	Тема урока	Дата по факту	Причина коррекции	Способ коррекции	
плану	факту						